Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs

نویسندگان

  • Yong Lu
  • Ligong Wang
  • Qiannan Zhou
چکیده

Let M be a mixed graph and [Formula: see text] be its Hermitian-adjacency matrix. If we add a Randić weight to every edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić matrix [Formula: see text] of a mixed graph M, where [Formula: see text] ([Formula: see text]) if [Formula: see text] is an arc of M, [Formula: see text] if [Formula: see text] is an undirected edge of M, and [Formula: see text] otherwise. In this paper, firstly, we compute the characteristic polynomial of the Hermitian-Randić matrix of a mixed graph. Furthermore, we give bounds on the Hermitian-Randić energy of a general mixed graph. Finally, we give some results about the Hermitian-Randić energy of mixed trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randić Incidence Energy of Graphs

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Similar to the Randić matrix, here we introduce the Randić incidence matrix of a graph G, denoted by IR(G), which is defined as the n × m matrix whose (i, j)-entry is (di) 1 2 if vi is incident to ej and 0 otherwise. Naturally, the Randić incidence energy IRE of G is the sum of the sin...

متن کامل

Quantitative Correlation of Randić Indices and Adjacency Matrixes With Dewar Resonance Energy of Annulene Compounds

Topological indices are the numerical value associated with chemical constitution purporting for correlation ofchemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is adelightful playground for the exploration of proof techniques in Discrete Mathematics and its results haveapplications in many areas of sciences. One of the useful indices ...

متن کامل

A Survey on the Randić Index

The general Randić index Rα(G) of a (chemical) graph G, is defined as the sum of the weights (d(u)d(v))α of all edges uv of G, where d(u) denotes the degree of a vertex u in G and α an arbitrary real number, which is called the Randić index or connectivity index (or branching index) for α = −1/2 proposed by Milan Randić in 1975. The paper outlines the results known for the (general) Randić inde...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Convergence Properties of Hermitian and Skew Hermitian Splitting Methods

In this paper we consider the solutions of linear systems of saddle point problems‎. ‎By using the spectrum of a quadratic matrix polynomial‎, ‎we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017